

• Security requirements
• Secure systems design

• Security testing and assurance

© 2014 Ian Sommerville, Software Engineering: Tenth Edition, Ch. 13 1

Topics covered

L12 – Software Security Assurance Process

Security requirements

12/11/2014 Chapter 13 Security Engineering 2

Security specification

• Security specification has something in common with safety requirements specification – in both
cases, your concern is to avoid something bad happening.

• Four major differences
• Safety problems are accidental – the software is not operating in a hostile environment. In security, you

must assume that attackers have knowledge of system weaknesses
• When safety failures occur, you can look for the root cause or weakness that led to the failure. When

failure results from a deliberate attack, the attacker may conceal the cause of the failure.
• Shutting down a system can avoid a safety-related failure. Causing a shut down may be the aim of an

attack.
• Safety-related events are not generated from an intelligent adversary. An attacker can probe defenses

over time to discover weaknesses.

3Chapter 13 Security Engineering12/11/2014

Types of security requirement

• Identification requirements.
• Authentication requirements.
• Authorization requirements.
• Integrity requirements.
• Intrusion detection requirements.
• Privacy requirements.
• Security auditing requirements.
• System maintenance security requirements.

4Chapter 13 Security Engineering12/11/2014

Security requirement classification

• Risk avoidance requirements set out the risks that should be avoided
by designing the system so that these risks simply cannot arise.

• Risk detection requirements define mechanisms that identify the risk
if it arises and neutralise the risk before losses occur.

• Risk mitigation requirements set out how the system should be
designed so that it can recover from and restore system assets after
some loss has occurred.

12/11/2014 Chapter 13 Security Engineering 5

The preliminary risk assessment process for
security requirements

Asset
identification

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Security req.
definition

Control
identification

Feasibility
assessment

6Chapter 13 Security Engineering12/11/2014

Security risk assessment

• Asset identification
• Identify the key system assets (or services) that have to be protected.

• Asset value assessment
• Estimate the value of the identified assets.

• Exposure assessment
• Assess the potential losses associated with each asset.

• Threat identification
• Identify the most probable threats to the system assets

7Chapter 13 Security Engineering12/11/2014

Security risk assessment

• Attack assessment
• Decompose threats into possible attacks on the system and the ways that

these may occur.

• Control identification
• Propose the controls that may be put in place to protect an asset.

• Feasibility assessment
• Assess the technical feasibility and cost of the controls.

• Security requirements definition
• Define system security requirements. These can be infrastructure or

application system requirements.

8Chapter 13 Security Engineering12/11/2014

Asset analysis in a preliminary risk assessment
report for the Mentcare system

Asset Value Exposure

The information system High. Required to support all
clinical consultations. Potentially
safety-critical.

High. Financial loss as clinics
may have to be canceled. Costs
of restoring system. Possible
patient harm if treatment cannot
be prescribed.

The patient database High. Required to support all
clinical consultations. Potentially
safety-critical.

High. Financial loss as clinics
may have to be canceled. Costs
of restoring system. Possible
patient harm if treatment cannot
be prescribed.

An individual patient record Normally low although may be
high for specific high-profile
patients.

Low direct losses but possible
loss of reputation.

9Chapter 13 Security Engineering12/11/2014

Threat and control analysis in a preliminary
risk assessment report

Threat Probability Control Feasibility

An unauthorized user
gains access as
system manager and
makes system
unavailable

Low Only allow system
management from
specific locations that are
physically secure.

Low cost of implementation but
care must be taken with key
distribution and to ensure that
keys are available in the event
of an emergency.

An unauthorized user
gains access as
system user and
accesses confidential
information

High Require all users to
authenticate themselves
using a biometric
mechanism.
Log all changes to
patient information to
track system usage.

Technically feasible but high-
cost solution. Possible user
resistance.

Simple and transparent to
implement and also supports
recovery.

10Chapter 13 Security Engineering12/11/2014

Security requirements for the Mentcare
system
• Patient information shall be downloaded at the start of a clinic

session to a secure area on the system client that is used by clinical
staff.

• All patient information on the system client shall be encrypted.
• Patient information shall be uploaded to the database after a clinic

session has finished and deleted from the client computer.
• A log on a separate computer from the database server must be

maintained of all changes made to the system database.

11Chapter 13 Security Engineering12/11/2014

Secure systems design

12/11/2014 Chapter 13 Security Engineering 17

Secure systems design

• Security should be designed into a system – it is very difficult to make
an insecure system secure after it has been designed or implemented

• Architectural design
• how do architectural design decisions affect the security of a system?

• Good practice
• what is accepted good practice when designing secure systems?

Chapter 13 Security Engineering 1812/11/2014

Design compromises

• Adding security features to a system to enhance its security affects
other attributes of the system

• Performance
• Additional security checks slow down a system so its response time or

throughput may be affected

• Usability
• Security measures may require users to remember information or require

additional interactions to complete a transaction. This makes the system less
usable and can frustrate system users.

12/11/2014 Chapter 13 Security Engineering 19

Design risk assessment

• Risk assessment while the system is being developed.
• More information is available - system platform, middleware and the

system architecture and data organization.
• Vulnerabilities that arise from design choices may therefore be

identified.

Chapter 13 Security Engineering 2012/11/2014

Design and risk assessment

Chapter 13 Security Engineering 2112/11/2014

Design risk
assessment

System
design

Technology
choices

Design assets Design and
requirements

changes

Architectural
design

System
requirements

Protection requirements

• Protection requirements may be generated when knowledge of
information representation and system distribution

• Separating patient and treatment information limits the amount of
information (personal patient data) that needs to be protected

• Maintaining copies of records on a local client protects against denial
of service attacks on the server

• But these may need to be encrypted

12/11/2014 Chapter 13 Security Engineering 22

Design risk assessment

12/11/2014 Chapter 13 Security Engineering 23

Design assets

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Control
identification

Technology and
 architecture choices

Available
controls

Design and
requirements

changes

Design decisions from use of COTS

• System users authenticated using a name/password combination.
• The system architecture is client-server with clients accessing the

system through a standard web browser.
• Information is presented as an editable web form.

Chapter 13 Security Engineering 2412/11/2014

Architectural design

• Two fundamental issues have to be considered when designing an
architecture for security.

• Protection
• How should the system be organised so that critical assets can be protected against

external attack?
• Distribution

• How should system assets be distributed so that the effects of a successful attack are
minimized?

• These are potentially conflicting
• If assets are distributed, then they are more expensive to protect. If assets are

protected, then usability and performance requirements may be
compromised.

Chapter 13 Security Engineering 2712/11/2014

Protection

• Platform-level protection
• Top-level controls on the platform on which a system runs.

• Application-level protection
• Specific protection mechanisms built into the application itself e.g. additional

password protection.

• Record-level protection
• Protection that is invoked when access to specific information is requested

• These lead to a layered protection architecture

Chapter 13 Security Engineering 2812/11/2014

A layered protection architecture

Chapter 13 Security Engineering 2912/11/2014

Platform level protection

Application level protection

Record level protection

Patient records

System
authentication

System
authorization

File integrity
management

Database
login

Database
authorization

Transaction
management

Database
recovery

Record access
authorization

Record
encryption

Record integrity
management

Distribution

• Distributing assets means that attacks on one system do not
necessarily lead to complete loss of system service

• Each platform has separate protection features and may be different
from other platforms so that they do not share a common
vulnerability

• Distribution is particularly important if the risk of denial of service
attacks is high

Chapter 13 Security Engineering 3012/11/2014

Distribut
ed
assets in
an
equity
trading
system

Chapter 13 Security Engineering 3112/11/2014

US equity dataUS trading
history

International
equity prices

US funds data

US user accounts International
user accounts

New York trading system

Authentication and authorization

UK equity dataUK trading
history

International
equity prices

UK funds data

UK user accounts International
user accounts

London trading system

Authentication and authorization

Euro. equity dataEuro. trading
history

International
equity prices

Euro. funds data

European user
accounts

International
user accounts

Frankfurt trading system

Authentication and authorization

Asian equity dataHK trading
history

International
equity prices

Asian funds data

HK user accounts International
user accounts

Hong Kong trading system

Authentication and authorization

Design guidelines for security engineering

• Design guidelines encapsulate good practice in secure systems design
• Design guidelines serve two purposes:

• They raise awareness of security issues in a software engineering team.
Security is considered when design decisions are made.

• They can be used as the basis of a review checklist that is applied during the
system validation process.

• Design guidelines here are applicable during software specification
and design

Chapter 13 Security Engineering 3212/11/2014

Design guidelines for secure systems
engineering

Security guidelines

Base security decisions on an explicit security policy

Avoid a single point of failure

Fail securely

Balance security and usability

Log user actions

Use redundancy and diversity to reduce risk

Specify the format of all system inputs

Compartmentalize your assets

Design for deployment

Design for recoverability

Chapter 13 Security Engineering 3312/11/2014

Design guidelines 1-3

• Base decisions on an explicit security policy
• Define a security policy for the organization that sets out the fundamental

security requirements that should apply to all organizational systems.

• Avoid a single point of failure
• Ensure that a security failure can only result when there is more than one

failure in security procedures. For example, have password and question-
based authentication.

• Fail securely
• When systems fail, for whatever reason, ensure that sensitive information

cannot be accessed by unauthorized users even although normal security
procedures are unavailable.

Chapter 13 Security Engineering 3412/11/2014

Design guidelines 4-6

• Balance security and usability
• Try to avoid security procedures that make the system difficult to use.

Sometimes you have to accept weaker security to make the system more
usable.

• Log user actions
• Maintain a log of user actions that can be analyzed to discover who did what.

If users know about such a log, they are less likely to behave in an
irresponsible way.

• Use redundancy and diversity to reduce risk
• Keep multiple copies of data and use diverse infrastructure so that an

infrastructure vulnerability cannot be the single point of failure.

Chapter 13 Security Engineering 3512/11/2014

Design guidelines 7-10

• Specify the format of all system inputs
• If input formats are known then you can check that all inputs are within range

so that unexpected inputs don’t cause problems.

• Compartmentalize your assets
• Organize the system so that assets are in separate areas and users only have

access to the information that they need rather than all system information.

• Design for deployment
• Design the system to avoid deployment problems

• Design for recoverability
• Design the system to simplify recoverability after a successful attack.

Chapter 13 Security Engineering 3612/11/2014

Secure systems programming

12/11/2014 Chapter 13 Security Engineering 37

Aspects of secure systems programming

• Vulnerabilities are often language-specific.
• Array bound checking is automatic in languages like Java so this is not a

vulnerability that can be exploited in Java programs.
• However, millions of programs are written in C and C++ as these allow for the

development of more efficient software so simply avoiding the use of these
languages is not a realistic option.

• Security vulnerabilities are closely related to program reliability.
• Programs without array bound checking can crash so actions taken to improve

program reliability can also improve system security.

12/11/2014 Chapter 13 Security Engineering 38

Dependable programming guidelines

12/11/2014 Chapter 13 Security Engineering 39

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

Security testing and assurance

12/11/2014 Chapter 13 Security Engineering 40

Security testing

• Testing the extent to which the system can protect itself from external
attacks.

• Problems with security testing
• Security requirements are ‘shall not’ requirements i.e. they specify what

should not happen. It is not usually possible to define security requirements
as simple constraints that can be checked by the system.

• The people attacking a system are intelligent and look for vulnerabilities. They
can experiment to discover weaknesses and loopholes in the system.

41Chapter 13 Security Engineering12/11/2014

Security validation

• Experience-based testing
• The system is reviewed and analysed against the types of attack that are known to the

validation team.

• Penetration testing
• A team is established whose goal is to breach the security of the system by

simulating attacks on the system.
• Tool-based analysis

• Various security tools such as password checkers are used to analyse the system in operation.

• Formal verification
• The system is verified against a formal security specification.

42Chapter 13 Security Engineering12/11/2014

Examples of entries in a security checklist
Security checklist
1. Do all files that are created in the application have appropriate access permissions?
The wrong access permissions may lead to these files being accessed by unauthorized
users.
2. Does the system automatically terminate user sessions after a period of inactivity?
Sessions that are left active may allow unauthorized access through an unattended
computer.
3. If the system is written in a programming language without array bound checking, are
there situations where buffer overflow may be exploited? Buffer overflow may allow
attackers to send code strings to the system and then execute them.
4. If passwords are set, does the system check that passwords are ‘strong’? Strong
passwords consist of mixed letters, numbers, and punctuation, and are not normal
dictionary entries. They are more difficult to break than simple passwords.
5. Are inputs from the system’s environment always checked against an input
specification? Incorrect processing of badly formed inputs is a common cause of
security vulnerabilities.

43Chapter 13 Security Engineering12/11/2014

